Find Special Angles of a Triangle...1

Joined
Jun 27, 2021
Messages
5,386
Reaction score
422
Section 4.3

Can you do 53 (a & b) as a guide for me to do a few more?

20211030_184608.jpg
 
53
a)

sin(theta)=1/2

1/2=opp/hyp=> opp=1, hyp=

adj=sqrt(2^2-1^2)=sqrt(3)

cos(theta)=sqrt(3)/2

tan(theta)=opp/adj=1/sqrt(3)

cot(theta)=1/tan(theta)=1/(1/sqrt(3))=sqrt(3)

sec(theta)=1/cos(theta)=1/(sqrt(3)/2)=2/sqrt(3)

csc(theta)=1/sin(theta)=1/(1/2)=2


b)

csc(theta)=2

csc(theta)=1/sin(theta)

1/sin(theta)=2

sin(theta)=1/2=> opp/hyp

opp=1, hyp=2

adj=sqrt(2^2-1^2)=sqrt(3)

cos(theta)=adj/hyp

cos(theta)=sqrt(3)/2


tan(theta)=opp/adj=1/sqrt(3)

cot(theta)=1/tan(theta)= 1/(1/sqrt(3))=sqrt(3)

sec(theta)=1/cos(theta)=1/(sqrt(3)/2)=2/sqrt(3)

csc(theta)=1/sin(theta)=1/(1/2)=2
 
53
a)

sin(theta)=1/2

1/2=opp/hyp=> opp=1, hyp=

adj=sqrt(2^2-1^2)=sqrt(3)

cos(theta)=sqrt(3)/2

tan(theta)=opp/adj=1/sqrt(3)

cot(theta)=1/tan(theta)=1/(1/sqrt(3))=sqrt(3)

sec(theta)=1/cos(theta)=1/(sqrt(3)/2)=2/sqrt(3)

csc(theta)=1/sin(theta)=1/(1/2)=2


b)

csc(theta)=2

csc(theta)=1/sin(theta)

1/sin(theta)=2

sin(theta)=1/2=> opp/hyp

opp=1, hyp=2

adj=sqrt(2^2-1^2)=sqrt(3)

cos(theta)=adj/hyp

cos(theta)=sqrt(3)/2


tan(theta)=opp/adj=1/sqrt(3)

cot(theta)=1/tan(theta)= 1/(1/sqrt(3))=sqrt(3)

sec(theta)=1/cos(theta)=1/(sqrt(3)/2)=2/sqrt(3)

csc(theta)=1/sin(theta)=1/(1/2)=2

Thanks. I will try several tomorrow and post here.
 
53
a)

sin(theta)=1/2

1/2=opp/hyp=> opp=1, hyp=

adj=sqrt(2^2-1^2)=sqrt(3)

cos(theta)=sqrt(3)/2

tan(theta)=opp/adj=1/sqrt(3)

cot(theta)=1/tan(theta)=1/(1/sqrt(3))=sqrt(3)

sec(theta)=1/cos(theta)=1/(sqrt(3)/2)=2/sqrt(3)

csc(theta)=1/sin(theta)=1/(1/2)=2


b)

csc(theta)=2

csc(theta)=1/sin(theta)

1/sin(theta)=2

sin(theta)=1/2=> opp/hyp

opp=1, hyp=2

adj=sqrt(2^2-1^2)=sqrt(3)

cos(theta)=adj/hyp

cos(theta)=sqrt(3)/2


tan(theta)=opp/adj=1/sqrt(3)

cot(theta)=1/tan(theta)= 1/(1/sqrt(3))=sqrt(3)

sec(theta)=1/cos(theta)=1/(sqrt(3)/2)=2/sqrt(3)

csc(theta)=1/sin(theta)=1/(1/2)=2

This is not the answer in the book.

For 53 part (a), the answer is 30° = pi/6. Same for part (b).
 

Members online

No members online now.

Forum statistics

Threads
2,523
Messages
9,840
Members
695
Latest member
LWM
Back
Top